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S

OPTIMAL HEATING SURFACE IN A MULTISTAGE
COUNTERCURRENT FLUIDIZED-BED HEAT EXCHANGER

A. K. Visloguzov UDC 66.096.5-536.24

Equations are derived for calculating the intermediate femperatures of the heating medium
such as to give the minimal total surface area in a multistage countercurrent heat exchanger
having tubes immersed in a fluidized bed.

Heat exchangers having surfaces immersed in fluidized beds are increasingly being used in industry, on
account of the properties of fluidized beds such as high heat-transfer coefficient, isothermal conditions in the
bed, and absence of local overheating.

On the other hand, the isothermal condition is a disadvantage, since it restricts the maximum temper-
ature of the cooling medium. The heat-balance equation for a one-stage exchanger is as follows (here and
subsequently it is assumed that the heating medium passes within the tubes, while the cooler medium passes
through the bed):

w(ty—1,) =06,—8,, 1)
which goes with the condition for the temperature difference between the heating fluid and the cooling one:

t, >0, @
which gives an expression for the temperature of the cooler fluid in a one-stage equipment; in the limiting case,
for t, = 6,, the maximum temperature in the cooler medium is

wty 6,
1+w

3

elmax=

One therefore usually employs a multistage system.in order to raise the final temperature of the cooler
medium.
The gas temperature falls in a single stage of a fluidized-bed heat exchanger, while the temperature of

the bed remains constant, and therefore one cannot say one has countercurrent flow or direct flow in a single
stage; however, in a multistage system it is possible to distinguish the two types.

In a direct-flow system, the two fluids enter the first stage and pass in series through all stages to
emerge from stage n, In the countercurrent case, the two fluids enter at opposite ends of the chain and move
in opposite directions.
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Fig.1. Scheme for a multistage countercurrent fluid-
ized-bed heat exchanger.

Here we consider a countercurrent system as shown in Fig.1,

The initial data for the design are wh, wg, t;, 04, 0n+; the calculation has to provide the areas Fy and
F of the surfaces. The calculation is based on the heat-balance equation (4) and the heat-transfer equation (5)
for each of the individual stages:

wh (iz —_ t[.;l) = wc (ez —_ ei-’:—l)» (4)
b — fio) = it le) o
In—t L
fi1—9;

From (5) we get Fj and F:

The total surface area of all heat exchangers is

{1 L, —0 1 t,—90
F=3F, =w In*—2 ...+ Ip—2 " ), 7
nlK T L, K, tn+1-—9n) @

The areas in the preceding exchangers (along the path of the hotter medium) decrease as the intermediate
temperatures t,, ts;,...,ty increase, while the areas in the later stages increase. There is a turning point
in the sum of the areas in this system of fluidized-bed exchangers having intermediate temperatures AFj =
AFj+q, which can be represented as F = f(t,, t3,...,tn), the minimum occurring for wh, we, t1, tn+y, 84,
On+1 , all constant,

To determine the critical points in (7) we take the partial derivative
or _ . Koy (timy — B ) — 0io1) — K (£ —0,) (Bin1 — 8)) ] '
P KK, (t,— 8;) (t1 —8) (f— 8:-1)

i

@)

The partial derivative of (8) is zero, infinite, or has no value at a critical point. We eguate the numerator
and denominator in (8), in turn, to zero to get for heat exchanger i that

K1 (b1 —0:0) ¢ —08—)) — K, (8, —0;) (i1 — 6;) = 0, (9
t,—0,=0, (10)

fy—8,=0, an

f,— 0,1 =0. 12)

It is found that (7) has a minimum for the tj defined by (9).
We have from (4) that

wt, — 0; = ¢, — const. (13)
We put
b1 —O = ¢, ' (14)
We solve (9) with (13) and (14) to get
H#Kw(1—w) + t[cy (Kima — K)) + 20Ke;] — Kim0im10, — Kiey (6 -- £20) = 0. (15)
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TABLE 1. Total Surface Area of a Two-Stage Countercurrent Re-
cuperator in Relation to the Temperature between Stages (initial
values t; = 1000°C; 05 = 0°C; we = 10-10° W/deg)

0,, ® fs, °C , W/de Ky K o Curve

¢ “h 8 W/m? deg | y/pe deg "sopts ¢ No.

700 533 15.108 50 ‘ 50 800 I

. 700 533 15.108 50 100 830 2

700 533 15.103 100 50 770 3

350 300 5.108 50 50 580 4

350 650 | 10.108 50 50 825 5

Then
o= (K — Ki1) 0, — 20Kie, VK —Kio1) (;—2wK0, P+ 4Kw (1—w) [Ki 1816, + K0, (61 )] . (16)
! 2K w (1 — w) 2Kw (1 —w)

Note that the tj have to be determined directly from (15) if w =1.

In solving (8) we get a system of n —1 equations of the type of (9) with n —~ 1 unknown temperatures; we
solve these to determine the optimum temperatures, i.e., those which give minimal F.

Equation (15) allows one to determine t, directly for a two-stage exchanger. A numerical method was
used to solve (7) with a Promin' computer and to derive F =f(t,) for a two-stage system (Fig.2). Table 1
gives the initial data used in calculating the total surface area and the optimum temperatures as defined by
(16).

The following conclusions are drawn from the results.

1. The total area as a function of the temperature of the hotter fluid has a turning point; (16) defines
the temperatures of the hotter mediumbetween the stages such as to make F minimal.

2. The total area decreases if one of the heat-transfer coefficients increases, no matter in which
stage this occurs (curves 2 and 3). This also affects the optimal temperatures and hence the relationship
between the surface areas F; and F,. Since the early stages (reckoned along the course of the hotter medium)
operate at the higher temperatures, they have to be made of more costly steels, so one should attempt to in-
crease the heat-transfer coefficients in the first stages.

3. The closer wis to 1, the less the curvature of F =f(t,), i.e., the less the effect of t; on F.

We get two equations of the form of (16) in determining the optimal temperatures for a three-stage sys-
tem; we substitute the known quantities (input data) to get

=4t Va,—ad,

A o : an
f=GEV a0, V;‘:_"”fff* : (18)

Then (17) defines the t; for which F =f(t,,t3) has a conditional minimum, i.e., 2 minimum for some
particular value of t,. Similarly, (18) defines a conditional minimum for a given value of t;, i.e., for a series
of values of t; we get a family of F =f(t;) curves (Fig. 3).

The absolute minimum corresponds to the least value out of the F =/ (t;) minimum.

Substitution of (17) into (18) gives a fourth-degree equation for the parameters at the absolute mini-
mum; there are certain difficulties in solving this in general form, and therefore it is better to use numerical
or graphical methods to solve (17) and (18).

An equation of degree greater than 5 is obtained in determining the minimum of the function F =f(t;,t5. ..
tp) if the number of stages is more than 3; in general, it is literally impossible to derive a general solution to
such an equation, and therefore numerical methods have to be employed.

A numerical method has been used with a computer to solve (7) for a three-stage system with the follow-
ing input data: K, = K, = K = 50 W/m?2-deg, t; = 1000°C, 8; =700°C, 8, =0°C, wp = 15-10° W/deg, w = 10-10°
W/deg; Fig. 3 shows the results. Also, (17) and (18) were solved graphically for the above conditions. The
temperatures corresponding to the absolute minimum were t, = 870°C, t3 = 710°C.
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Fig.2. Total surface area F (m? as a function of t; (°C), the temperature of the

heating medium between stages, for a two-stage countercurrent heat exchanger:
1-5) see Table 1.

Fig. 3. Total surface area F (m?) as a function of ty (°C), the temperature of the

heating medium between stages, for a three-stage countercurrent heat exchanger
for t; (°C) of: 1) 650; 2) 670; 3) 710; 4) 770.

The computer results agree with those from graphical selution of (17) and (18).

Comparison of Fig.2 (curve 1) and Fig.3 (curve 3) shows that the total area decreases as the number of
stages increases, other conditions being the same.

Therefore, the total area in a countercurrent heat-exchange system is dependent on the choice of the in-
termediate temperatures; if the temperatures between stages are chosen arbitrarily, the temperature of the
cooler medium in the stage with the larger area may be less than that in the stage with the smaller area.

NOTATION

ty,tn, temperatures of heating fluid at the inlets to the first and last stages; 0, 6,, temperatures of the
heated fluid at the outlets from the first and last stages; wy, w, water equivalents of the heating and heated
(cold) fluids; w = Wh/ we, ratio of water equivalents of the heating and heated fluids; K;, Kj, K,, heat-transfer

coefficients of the first, i-th, and last stages; F,, Fi, F,, heat-transfer areas of the first, i-th, and last
stages; F, total area of all the stages; aj, constant coefficients.
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